Standardized Fault Reporting in Electronic Commerce Software

University of St. Thomas

MBIF 705 - Foundations of Electronic Commerce

Final Paper

Jeff D. Conrad

December 3, 2003

Abstract

Faults in real-time software systems range from minor user interface issues to critical exceptions. Faults in electronic commerce (EC) manifest as lost clients, incomplete transactions, double billing, loss of data, security violations, increased labor and capital costs, leading to loss of both productivity and profitability. National impact to the U. S. alone for inadequate software testing is estimated at US$59.5 billion (RTI, 2002). Although most software systems generate error logs, collections of standard information for each application, these are inadequate to detail the complexity of electronic commerce. Typically, diagnostic information is available at the time of the fault, however, not all of it was retrieved, communicated, stored, timely to the required information systems (IS) people.

EC on the World Wide Web thrives when easy-to-implement standards are followed by all parties. To this end, EC fault services should be built around a standard error reporting syntax. This protocol should be open, transferable, and customizable. By incorporating fault services, software vendors can help their support personnel to become less reactive and more proactive. Developers can benefit from reduced interactive testing and make use of automated fault-testing services. Software vendors could be alerted to faults, without the need for a formal customer request. Via a standardization of fault communication mechanisms, the industry can improve electronic commerce and increase the market demand.

1. Introduction

“Electronic commerce (EC) describes the manner in which transactions take place over networks... It is the process of electronically buying and selling goods, services and information” (Turban, 2002). Electronic commerce software is continuously evolving. The systems which have been built today will be improved upon tomorrow, bettering the process of conduction electronic transactions. Yet so far electronic commerce in business–to–consumer models is treated as a non-critical system by a majority of businesses and organizations. I propose that increasingly, as their activities are conducted solely through electronic commerce, that perception will change. EC software applications will be treated as truly mission-critical applications.

EC requires continuous availability, on a 365 x 24 x 7 schedule. As a goal, businesses would desire 100% uptime. Problems include network connectivity, electronics hardware, operating systems, software settings, application errors, database errors, security barriers, and interface errors. It is possible any of these problems could be the result of the server (responder) or the client (requester) of the transaction. For instance the business can do everything in their power to complete a business-to-consumer (B2C) transaction, but the user's wireless connection is lost. In a more severe case, the server database may become corrupt. The goal of an information services department is to allow the organization to run smoothly, despite the millions of issues that could arise. The people, process, and technology of IS must continuously work around these issues to provide the service expected by their clients, within and outside the organization.

Fault tolerance and software reliability have been treated as independent research areas. Most of the research into fault-tolerance in EC appears to focus on Internet hardware. Software reliability is a research area that focuses on the finding and fixing of defects. As the number of faults in the hardware realm diminish due to better standards and software to work with these issues, the next area that the EC industry should focus is on software fault tolerance.

Why would there be faults in EC software? Some EC Software might not fit with some hardware, or it may be incompatible with certain operating systems or components (Turban, 2002). Reducing the cost of software development and improving software quality are important objectives of the software industry. However, the complexity of the underlying software needed to support the EC economy is continuously increasing. The size of software products is no longer measured in terms of thousands of lines of code, but millions of lines of code (RTI, 2002). With tens of millions of lines of code in full-scale EC business applications, and a programming staff in the hundreds, the ratio of lines of code per programmer may be in the hundreds of thousands. There may be conditions that were just not expected to occur. Looking at software reliance as a chess game, with the wide range of abilities provided to users, there could be a million move combinations that the user made before the current checkmate. Programmers try to encapsulate their code with basic error handling, but often error handling is harder to test for, and less often encountered.

Software is tending away from an independent, mechanistic, model to that of a natural system. To successfully live within the natural systems of the marketplace, EC software needs to become more intelligent and adaptable. The objective of this paper is to introduce a new, parallel, strategic focus into the software industry. This is to focus on fault tolerance in EC software. Programmers need to develop into all EC software, the capability to recover and continue operating, regardless of the faults encountered. Anticipating the need for failure systems will make software appear competitively more resilient and thus trustworthy to the customer. Reporting of fault specifics at all point in the software development cycle, back to the software developers and architects will allow them to proactively evolve their code to live in the natural business world.

Allowing the user to undo an action is not unheard of in every other kind of application, yet electronic commerce has lost that sense of history, or at least does not allow the user to monitor it. Treating the EC transaction as an atomic process will help to at least enforce the pattern. An EC site thought of as a set of patterns will likely adapt to these new paradigms, whereas one thought of as a series of web pages would be difficult to evolve.

In Part 2, Economics of Software Quality, I illustrate the problems that faults cause in the EC world. In Part 3, Software Risk Management, I demonstrate how risk in software management can be calculated. In Part 4, I define a Software Fault Definition Standard. In Part 5, Toward Fault Tolerance in EC Software, I show how software quality can improve through a renewed development approach with a fault tolerance perspective.

2. Economics of Software Quality

Taking orders from customers can be drastically improved if it is done on-line, reducing both processing time and mistakes (Turban, 2002). However, the potential exists that it will not be improved, depending on the strategy for implementation and how prepared the vendor is for EC. Estimates of the economic costs of faults in software in the U.S. range in the tens of billions of dollars per year and have been estimated to represent approximately just under 1 percent of the U.S. gross domestic product (RTI, 2002).

Electronic commerce (EC) consumers require special consideration. Since their contact with a business is not face-to-face, they require additional levels of trust, security, and reliability. From an economics perspective, these are additional costs that the vendor must bear.

In a business-to-consumer (B2C) model, consumers typically have a wide range of choices. Losing touch with a customer, due to a software fault, may result in a lost transaction. A successful e-business is one that can provide a reliable virtual marketplace to its users. Faults affect EC software logistics by impacting requirements of EC (see Table 2.1).

EC Requirement
Description

Information
Delivering necessary information and goods to buyers.

Payment
Transfer of payments handled according to banking, accounting requirement.

Trust
Building and maintaining reputations, ratings of the firm.

Legal
Managing tracking mechanisms for dispute resolution, security protection.

Regulatory
Compliance with requirements for monitoring, enforcement.

Table 2.1 EC Requirements

An e-commerce system must provide the same experience for a user at any point of the day, regardless of the particular software installation or database backup schedule. An fault in the software may cause the customer to be “removed from” the store. In comparison, a “bricks-and-mortar” store, rarely closes its doors on a customer during business hours, and typically has backup means of completing the sale properly even if the payment verification system goes down. Even an hour of downtime across their EC systems can cost a significant amount of money (see Table 2.2).

Industry Sector
Hourly Cost of Downtime

Manufacturing
$28,000

Transportation
$90,000

Retail, Catalog Sales
$90,000

Retail, Home Shopping
$113,000

Media, Pay Per View
$1,100,000

Banking data center
$2,500,000

Financial, Credit Card Processing
$2,600,000

Brokerage
$6,500,000.00

Table 2.2: Average Cost of Unplanned Downtime for Various Industries (Microsoft, 2003)

Costs to the EC industry associated with faults include increased installation costs, capital costs, labor costs, and forfeited revenues (RTI, 2002). In addition, to prepare for bugs, businesses install redundant systems, leading to increased labor and capital costs (see Table 2.3). “If a system crashes during core service hours, the result can be significant financial impact” (Microsoft, 2003).

Cost
Cost Description

Labor
Additional employee and contract labor for testing, installation of new software.

Failure
Costs associated with catastrophic failure of software products.

Performance
Impact on users’ operating costs when software does not perform as expected. These include the cost of “workarounds” and loss of productivity when purchased software does not perform as anticipated

Redundancy
Additional hardware and systems that users maintain to support operations and backup data in case of a software failure attributable to an inadequate infrastructure for software testing

Delayed Profits
Discounted value of time delays in production and transactions attributable to an inadequate software product.

Sales Forfeited
Discounted value of foregone transactions due to an inadequate software product.

Table 2.3 Costs Borne by the Software Client (RTI, 2002)

Numerous pathways exist for EC failures, both on the server-side and on a client-side of a B2C transaction (see Table 2.4). Though the cause of the failure may be on the client, or server-side, it becomes the user who bears the pain of failure. The user experiences frustration, insecurity, bewilderment, when they have no recourse, and no information as to what went wrong.

Server-side
Client-side

Hardware failures

Network connection failures

Operating system failures

Database failures

Server application failures

Security failures

Process failures

Validation failures
Hardware failures

Network connection failures

Operating system failures

Client application failures

Security failures

Process failures

Validation failures

User interface failures

Accessibility failures

Data entry failures

Validation failures

Table 2.4 Types of Server side and Client-side Failures

Eventually in the case of a B2C transaction, the vendor will probably bear the monetary loss. In the B2C case, a failure wastes the investment in marketing that it took to bring the customer to the site. Since there are sponsors or hypermediaries that may have paid for clicks to get a single customer to the site, a whole supply chain of dependents loses revenue. A B2C failure effect is the virtual equivalent of the user's electronic shopping cart left at the cash register without payment. Additionally, marketing information about buyer preferences may now have bad data about a customer that really never completed their transaction. Inventory control systems may have allocated product (marked as held). In an intranet business to employee (B2E) system, failure of a business critical function may invoke a cost totally within the organization.

EC applications keep changing over time. There are several options for developing EC applications (standards). Building from component libraries is a viable strategy. The wide range of software vendors, and the capabilities of software libraries allow one EC application to have many components from several different vendors. EC applications may involve several business partners, including a consultant. Development may be in-house, outsourced or a combination (Turban, 2002). For these reasons, correcting software faults may potentially involve many people from many organizations.

However, components should not allow errors to transmit beyond their recognized areas of control. “All errors that occur inside a component must be detected before the consequences of these errors propagate across a component interface. Otherwise, a defective component can falsify the operation of other components by the provision of corrupted output data across the component interface. Ideally, a component should support the fail-silence property: it either operates correctly (in the domains of time and value), is silent, or it produces a detectably incorrect result without disturbing the other components in the system (Kopetz, 2000).

Fault tolerant user interfaces could help limit the number and severity of user errors, but not all are preventable. NASA (FTA, 2002) describes the following possible human error categories. I have applied their error types to EC (see Table 2.5).

User Error Type
Electronic Commerce Example

Test and Maintenance
Errors induced by test and maintenance operations. For instance, data loaded onto a preliminary test server accidentally gets placed onto a live production server. Maintenance such as a system backup/restore which is missing components or lacks synchronization.

Initiating
Human initiates an error, and can override a safety component that can mitigate the problem. In this case, maybe this is akin to entering “sudo” mode in UNIX and then accidentally removing files.

Procedural
Clicking the submit button on a form twice, when it does not seem the browser is responding, may initiate a double transaction. Continuously pressing the forward and back buttons or refresh during a slow response from the server may send numerous transmissions to the server that must be handled logically. A user needs to change a value as a result of an invalid state, but fails to change it, or the program does not assist them.

Inappropriate actions
Errors leading to inappropriate actions are sometimes termed errors of commission. These errors result in inappropriate actions being taken that may compound a problem. Errors of commission are sometimes committed in conjunction with procedural errors or errors of omission

Detection and recovery
Human errors in failing to detect and recover a failure that occurs. The user may have inadvertently deleted a requisition. If the user cannot or does not undo that deletion, it becomes permanent. Also apparent is when users enter the data incorrectly. When a user enters a monetary amount, but had a space, or comma in the value, and this was not caught by the interface and reported. So instead of “1000”, the user entered “1,000” and the system only stores “1”, because of their locale currency settings, or because of a string to number conversion error.

Table 2.5 User Errors in Electronic Commerce

If you can understand customer intentions at an e-business site, you can factor them into technology choices and mechanisms that support them. Is it easy for a single-minded customer to find and buy a product, or for a holistic-minded user to do a combination of browsing, learning, and shopping? Auguste (2001) proposed that each mouse click, each turn in navigating through the site, each database query — maybe especially those that come back with “no matches” — is a gold mine of integrated data.

From personnel experience as a B2C customer, I have seen that many e-commerce sites often exhibit a completely different paradigm of quality in the user interface between the steps of product selection versus buying. The search process allows multiple entry and exit points, but the buying process is very error prone, slow to respond, difficult to peruse, and often poorly designed. This goes against what Michael Hammer stated in The Agenda (2001), that companies need to present a single face to their customer. For EC websites to be easy to do business with (ETDBW), they should have consistent error handling metaphor across the site.

Faults that I have experienced using e-commerce sites include:

1. JavaScript errors. These sites must not test on enough client machines or browsers, or the developers test with the “report errors” option off. Normally these just disable a mouse-over feature, but bad script can cause the web page not to perform the way it was intended.

2. Server response. When the server does not respond due to some sort of an application error, the server administrator should tailor the default error page to appear consistent with the website.

3. User error recovery – strange behavior after a server fails to respond. It is not easy to determine exactly what happened with the transaction state, by looking at the history, the user is not immediately taken to the position that they were before the failure.

4. “Back” button errors – sometimes data that was transmitted in a POST-type call, cannot properly be submitted when the user presses the “back” button in the browser.

5. Cookie crossover – a shopping cart from the http site fails to transfer over to the https site. I encountered this November 22, 2003 on the Harvard Business Review site.

6. Network connectivity. Sites that perform active processes, should provide the user with feedback of some sort as to the state of the process.

7. Overly complicated scheme to get electronic products. With secured publications sealed by SealedMedia Unsealer from the Harvard Business Review, the digital content expires within less than a year. With Altova.com's XMLSpy software, you get two registration codes, a trial and then a final product code, “xxxxxx-xxxxxx-xxxxxx-xxxxxx-xxxxxx”, all lowercase and uppercase letters, which you must maintain in your private database. It is easier when they realize that zeros and O's look alike, and stick with one case.

From a customer relationship management perspective, it would seem that efforts to provide one-to-one marketing fail when the vendor system cannot receive feedback from users. The vendor needs to know why did the customer not buy? They need to portray that they are honestly concerned about the issue and want to maintain customer loyalty and trust.

How can EC software be evaluated to see if it meets the objectives? ISO 9126 is the software product evaluation standard. Although a general set of standards has been agreed on, the appropriate metrics to test how well software meets those standards are still poorly defined. Publications by IEEE (IEEE, 1988, 1996) have presented numerous potential metrics that can be used to test each attribute. These metrics include: fault density, requirements compliance, test coverage, and mean time to failure.

The problem is that no single metric is able to unambiguously measure a particular quality attribute. Different metrics may give different rank orderings of the same attribute, making comparisons across products difficult and uncertain (IEEE, 1998). Surely though, a more fault tolerant process will act as a trust enhancer (Steinhauer et al, 1997). Decreasing the economic cost of trust, could make the EC vendor's system a total lower cost to the consumer.

The tendency to believe that software errors are unique precludes the notion that errors can be found and eliminated in a generic fashion. Studies indicate that groups of software developers make the same errors time and time again irrespective of the software they are trying to build. Software errors are not unique, and this is excellent news since it would seem to indicate that there must be a generic means of modifying the software development process so as to control the introduction of errors (Lurie, 2003).

Some companies now incorporate automated software testing tools in the development process. Called "static analysis," this process puts the burden of error detection on machines by running an automated battery of tests that can reveal errors. But even automated testing is still testing after the fact. The true goal is to prevent errors before they happen (Lurie, 2003).

Yet, to provide fault tolerant software, the cost of performance must be weighed. By adding fault tolerance to every function, may decrease the performance of the software. This is a cost which must be weighed against the perceived benefit of being able to recover from a condition. Coding a one-line function does not necessarily need a try-catch block around it. A substantial function performing a database query, probably requires some error handling. The trick is to have the right balance appropriate for the software program. None is too little, but wrapping every line is too much.

Today, e-commerce sites seem to fall short of wanting to follow up on lost sales. Since EC reduces the barrier of cost of entry, a website would try to capture as many of the potential customers that it could. However, I performed a simple study of several e-commerce book sites, described in Appendix 1. I placed an order, and followed the process of providing my order, e-mail, and address information. I carried each order through to the point of not submitting the payment. This procedure simulated a loss of network connection on the client side. None of the sites that I tested tried to contact me to find out what had happened, or to try to complete the sale. My guess is that if a system failure on the server side occurred, I also would not have heard anything from them.

Currently, the software industry as a whole sells the idea that it has software fault tolerance, but does not often deliver. The majority of EC fault tolerance ads currently deal with hardware fault tolerance. The software ads that purport to provide fault tolerance provide only minimal sound bytes about how they go about doing it (E.Piphany, 2003). The EC software industry needs to begin an intensive focus on providing better fault tolerant systems to the consumer. It can do that by following a consistent industry model.

3. Software Risk management

What constitutes risk? Generally the risk consists of: 1) what can go wrong, 2) how likely is it? 3) what are the consequences (NASA Risk, 2002). The probability of any type of fault occurring in electronic commerce (EC) software increases with the number of involved system applications, server types, server operating systems, database systems, web application servers, client companies, users/seats, browsers, and browser versions that the system runs. Mathematically computing the risk to a software vendor may look something like this:

P(#System Applications) | P (# Server types) | P (# Server Operating Systems (OSes)) | P (# Database systems) | P(#Web application servers) | P (# Client Companies) | P (# Users/Seats) | P (# Browsers) | P (# Browser versions)

Economically, with this number of variables, fault discovery in EC software looks less like a deterministic mechanical (Bohr) system, and more like a quantum space. The more that components can be made to work within a variety of environments, the less potential a peculiar environment will be the primary reason for the fault. If we want to “create order where chaos reigns” (Hammer, 2001), then we must intervene.

Software engineers are optimists. When planning software projects, they assume that the parts will work together as planned (Bohr model). The creative nature of software development means that an engineer can never accurately predict what’s going to happen (quantum) (Wiegers, 2003).

Risk management is becoming recognized as a best practice in the software industry for reducing surprises. While it can never predict the future with certainty, EC firms can apply structured risk management practices to peek over the horizon at the traps that might be looming, and take actions to minimize the likelihood or impact of these potential problems. Risk management means dealing with a concern before it becomes a crisis (Wiegers, 2003).

Symptoms that an organization is not effectively practicing risk management include a continual state of project instability, constant fire-fighting, multiple schedule slippages because of recurring surprise factors, and constantly operating in a high-stress, crisis management role. Formal risk management greatly improves the likelihood of successful project completion, and it reduces the potential negative consequences of those risks that cannot be avoided. Many risks arise because of dependencies on outside agencies or factors (see Table 3.1). The software engineer cannot always control them (Wiegers, 2003).

Customer-furnished items or information

Internal and external subcontractor relationships

Inter-component or inter-group dependencies

Availability of trained, experienced people

Reuse from one project to the next

Requirements Issues

Table 3.1: Typical Dependency-Related Risk Factors (Wiegers, 2003)

There are numerous potential risks in EC without even developing software. Categories of risk include personnel, managerial, project aspirations, and financial. Risk prioritization helps the project focus on its most severe risks by assessing the risk exposure. Exposure is the product of the probability of incurring a loss due to the risk and the potential magnitude of that loss. This prioritization can be done in a quantitative way, by estimating the probability (0.1 – 1.0) and relative loss, on a scale of 1 to 10. Multiplying these factors together provide an estimation of the risk exposure due to each risk item, which can run from 0.1 through 10 (Wiegers, 2003).

The vendor sees a cost for each fault discovered in the software. The vendor experiences a cost when the customer reports a fault, when it is entered into a fault tracking system, the time at which it is investigated, test cases are made, the software is fixed, a proposed solution is tested, a patch prepared and tested, and then it is ready to be made available to the customers. The relative cost of a fault increases the later in the development cycle that it is discovered. As a software project goes from conception to release, the cost of repairing defects increases, at the approximate quantities shown in Table 3.2 (RTI, 2002).

Requirements Gathering and Analysis/Architectural Design
Coding/Unit Test
Integration and Component/System Test
Early Customer Feedback/Beta Test Programs
Post-Product Release

1x
5x
10x
15x
30x

Table 3.2 Relative Cost to Repair Defects when Found at Different Stages of Software Development (RTI, 2002)

The total cost to detect and repair the defect, once the product is released, is shared between the software developer (D) and the client (C). Architectural design (D), Software development (D), Testing (D), Release (D), Implementation (C), Performance/Operation (C) (RTI, 2002). This allocation is well-known to the software clients and they have adjusted their purchase and implementation schedules in order to spend additional time and resources to determine which product to buy. In some instances software clients will delay purchasing new software products until more information about software quality is revealed by early adopters. Delays in adoption reduce the timely benefits from the new software and in turn lead to reductions in society's economic welfare. (RTI, 2002) I assert that if EC wanted to help diminish the cost, reducing the cost of fixing bugs in the performance/operation phase might produce the most cost reduction to the consumer, and the vendor.

Location in Cycle
Current Distribution Where Bugs are found
Hours

Requirements
7%
1.2

Coding/Unit testing
42%
4.9

Integration
28%
9.5

Beta Testing
13%
12.1

Post-product Release
10%
15.3

Table 3.3. Average time to Fix a bug (RTI, 2002)

There are three pillars of successful EC system: people, process, and technology. The software vendor labor cost to fix a bug is similar to the overall cost table shown previously. It takes 15x more labor time to fix an average bug in a post-product release (Table 3.3). How much of this labor is spent due to lack of fault diagnostics? The developer needs to recreate the scenario reported in the fault tracking system. When the diagnostic information is not available, a lot of time is spent by administrators or software vendors trying to recreate the fault. If the process were to change, to communicate fault diagnostics, and the developer/fixer had more circumstantial information, the time to fix a bug in the later stages of the development process could be much reduced.

Metrics will be important in determining the cost and benefit of software reliability expenditures. Metrics involve critical business issues for all new ventures, but especially for business changes like B2C EC. If an organization cannot adequately measure its business benefits from a course of action, then it is extremely difficult to know how much of an investment is justified in this area (Rose et al, 1999).

Many organizations are attempting to implement a Six Sigma strategy for quality processes. All of the critical attributes such as delivering what the customer wants , process delivery, what the customer sees and feels,stable operations, and a design for Six Sigma (GE, 2003). All of these “better for the company” processes, I propose, can be aided by implementation of a fault-tolerant pattern perspective in EC Software.

4. Fault Standard Definition

This definition of a software defect covers a wide span of possibilities. A software defect is a manifestation of a human (software producer) mistake; however, not all human mistakes are defects, nor are all defects the result of human mistakes. When found in executable code, a defect is frequently referred to as a fault or a bug. A fault is an incorrect program step, process, or data definition in a computer program. Faults are defects that have persisted in software until the software is executable (Florac, 2002). In this paper, I use the term fault most of the time, as they are the ones that will affect a live EC software product.

Specifics are already available for many fault definitions, but not all. The EcmaScript Error object defines only “name”, and “message” as actual description properties for the error object (Ecma International, 1999). The SOAP 1.1 specification requires some standard properties, and then allows for the details to be added in a special element, called details (See Appendix 2).

Many of the attributes listed by Florac (2002) provide specificity about a defect. However the debugging of the issue is a technical endeavor, and I would propose to include more specific details about the source of the fault. The application developer could include more information about not just the program that created the error, but the exact class or module, and perhaps which function or method, and perhaps line number in the source code in which the fault occurred.

I propose expanding on the standards sought by Florac (2002), in that the fault should be communicable via XML. It should have the ability to expand on details, open to specificity. Elements that do not fit the standard should be added if they will assist the developer with debugging the fault. In addition, there are several phases that this information should be grouped into. There are several phases of fault recognition that should be noted (see Figure 4.1).

1. Fault generated and discovered

2. Fault data collected

3. Fault communicated

4. Fault rectification

a. Fault Stored in Tracking System

b. Fault Fixed

5. Distribution

a. Patch created

b. Patch tested

c. Patch propagated

6. Reporting, measuring analytics

Figure 4.1. Fault Resolution Process

In phase 1, the fault is generated. Next, in phase 2, diagnostic information is collected and stored in an object in the software. In phase 3, that data is transmitted to a listening web service. As part of phase 4, the fault diagnostic is stored in a tracking system, which could be in the client sites' IS department, or up to the software vendor's system if that is permitted. On a test system, or development system separate from the live system, the error condition is fixed or prevented, and correlated test cases are generated. Next, in phase 5, the fault fix is made into a software patch or somehow propagated from the development environment to the live environment. Finally, in phase 6, a manager reviews metrics and analytics of the fault histories, with the capabilities of data mining, and report generation.

Also, the software research usually quantifies single faults, without looking into severity (this is the Single Fault Assumption – that only one fault is present at a time.) Although this reduces the reporting complexity, it is perhaps not as useful for working with faults in situ at runtime (Malaiya, 2000).

The Littlewood-Verrall software reliability model analysis makes the following assumptions. 1) There is no upper bound on the total number of failures, i.e., the program will never be fault free. 2) The debugging may not be perfect, i.e., new bugs may be introduced during debugging. 3) During testing the software is operated in a similar manner as the anticipated operational usages. Successive times between failures are independent random variables, each having an exponential distribution.

Faults in EC software are not desired. But well communicated faults can be fixed quicker and easier when the diagnostic information is retained and collected. A fault represents an anti-pattern (Brown et al, 1998), a way of doing something within the system that was not anticipated or did not work as expected.

This paper recommends the concept that severity should be measured on a logarithmic scale. The severity is likely to be a qualitative assessment of the impact of the fault. It characterizes the level of impact of the problem on the normal performance of the software as a whole, as well as it's impact on the quality of the product and the image of the developer (Sekirkin and Boland, 2002). The severity really needs to take into the potential impact of the fault on the context and frequency in which it is likely to be encountered. A quantitative value helps compare values, but it should be realized that it is an estimated value, open to interpretation. This is akin to the shortcomings of many scales of severity in use today. The Fujita Wind Scale is highly subjective (Snow and Leyton, 2003). Other scales are not logarithmically-based, such as the Saffir Simpson Hurrican Scale (NOAA, 2003). However standardized scales have the advantage in communicating between specialists, and the ranking is simple and understandable, if not precise. “The Fujita Scale may not be a perfect system for linking damage to wind speed, but it had distinct advantages over what had gone on before its inception... From a practical point of view, it is doubtful that any other system would have found its way into widespread accepted use” (Atmospheric Dynamics DST, 2001).

There are some categories in place today, however a severity 1 may mean something different between scales. A survey of software reliability literatures showed some using 1 as severe (Boland, 2002). Other scales, such as NASA's, start with 1 as a low. A logarithmic scale for ranking is used in the Richter scale, for earthquakes (Louie, 1996; Braile, 2003), for stellar magnitude (Pogson, 1856). Using a logarithmic scale allows the severity to have additive properties, which would be useful in the analysis and reporting phases.

Trivial faults could be considered to be minimal interface information, or warnings. Major errors should be significant cause for concern wherever they are encountered. A simple error, though experienced by a million users is just as costly to thousands of users as a very severe problem experienced by a single user. By using a log scale of severity, we can add effects (Bock, 1994). A severity of -1 may need to be stored, as a tracing measure, or for provability (Kailar, 1996) A severity of 9 indicate 9 orders of apparent magnitude of severity over a 0 – level fault. The following equation shows equivalent severity events in terms of total cost (where s-n is severity level n). Table 4.1 shows the proposed severity levels for EC software.

100,000 x (s-1) = 10,000 x (s-2) = 1,000 x (s-3) = 10 x (s-5) = 1 x (s-6)

Severity
Effect
Notification

-1
No fault. If the database requires this field, a “-1” should be entered, otherwise this is assumed in a null condition.

0
Information. A problem may have been noticed and corrected.
L

1
Information or warning. Not significant to stop any processing.
L

2
Error or exception. The system is still functioning, but the specific transaction may have failed. This fault can be investigated, but it may be an anomaly.
L, U

3
Error or exception. The system is still functioning, but this error was not anticipated and should be recorded and fixed.
L, U, A, V

4
Error or exception. This error was not handled, the system may not be functioning, probably no permanent damage done.
L, U, A, V

5
Failure. Slight damage. Requires intervention.
L, U, A, V, ER

6
Severe failure. Could be destructive. Requires immediate intervention.
L, U, A, V, ER

7
Critical failure. Severe damage. Requires immediate intervention.
L, U, A, V, ER

8
Critical failure. Severe damage. Requires immediate intervention.
L, U, A, V, ER

9
Critical failure. Severe damage. This requires immediate intervention. For an EC site, this could mean that they are no longer viable.
L, U, A, V, ER

L – Log, U – User alert, A – Administrator notification,

V – Software vendor notification, ER – Emergency Response

Table 4.1 Software Fault Severity Levels

The importance in making an industry error standard is that fault data will need to be communicated between completely different software systems. Standards allow messages such as faults, errors, warning, and information to be transferred between sites using an expected format (typically some kind of XML). The standard definition should fit across industries, but be expandable for specific industries.

In Appendix 4, I present the structure of an EC software data standard. It is a work in progress, and I still need to get review and comments from my colleagues, but it is a good start toward a cross-industry standard.

5. Toward Fault Tolerance in EC Systems

Webopedia.com (2003) defines fault tolerance as: “The ability of a system to respond gracefully to an unexpected hardware or software failure. There are many levels of fault tolerance, the lowest being the ability to continue operation in the event of a power failure. Many fault-tolerant computer systems mirror all operations - that is, every operation is performed on two or more duplicate systems, so if one fails the other can take over.”

Fault tolerance in EC is defined in this paper as the ability for EC software to recover from faults, in a consistent manner. To recover means that at some later point, when the fault condition is fixed, the faulted process can continue, or if it cannot continue without user intervention, to provide options to a user as to how to proceed. Such a system is resilient, not fault-proof. Fault tolerance in the simplest terms, is the ability to “pick up where you left off”. An EC firm with a fault-tolerant mindset should never say “Failure is not an option” (Rainfinity, 2003), but rather “non-recovery is not an option.”

Fault tolerance is often implemented differently for each piece of software. Fortunately higher level languages now provide a try-catch pattern for exception composition(Appendix 3). Libraries have striven to create standard error handling objects. Overall though, across systems, there is a lack of consistency. At present, many fault-tolerant real-time systems are application-specific, requiring a significant amount of additional implementation for fault-tolerance. In the future, the application software for a fault-tolerant system and a non-fault-tolerant system will be the same (Kopetz, 2000).

NASA developed the technique know as the Fault Tree Approach (FTA). It is an analytical technique, where an undesired state of the system is specified, and the system is then analyzed to find all realistic ways in which the undesired event (top event) can occur. The faults can be events that are associated with component hardware failures, human errors, software errors, or any other pertinent events which can lead to the undesired event. A fault tree thus depicts the logical interrelationships of basic events that lead to the undesired event, the top event of the fault tree (NASA FTH, 2002).

Intrinsic to a fault tree is the concept that an outcome is a binary event i.e., to either success or failure. A fault tree is composed of a complex of entities known as “gates” that serve to permit or inhibit the passage of fault logic up the tree. The gates show the relationships of events needed for the occurrence of a “higher” event. The “higher” event is the output of the gate; the “lower” events are the “inputs” to the gate (NASA, 2002).

[image: image1.wmf]Currently the software fault model models software reliability as either the system is normal, or it is faulty. A fault tolerant EC system needs to have some point from which the user can recover. In software reliability, 0 represents failure. In fault tolerant EC software, however, perhaps 0 is a situation that arose at a point in time, but it will be 1 later. A fault tolerant EC software recognizes severity (not just 0 or 1). Figure 5,1 shows the fault tolerant paradigm.

Figure 5.1 Fault Tolerance

Forward error recovery is an attempt to continue with the faulted state. This is possible when the nature of the error and the consequences of faults can be assessed. Backward recovery involved backing up one or multiple systems to a previous state. It is hoped that the previous state is error-free. This is one method of recovering from a previous state (Szturc et al, 1999).

Typically, software is involved with a process. A fault resilient software recognizes which part of the process failed. To that end, the process may be considered incomplete, or failure with rollback is necessary. The pattern of Atomicity allows software to logically link multiple operations so that either all of them are executed or none of them are (Tygar, 1996).

One example of recent EC software that is currently developed to assist the end user with resiliency, is Zstep (Lieberman and Wagner, 2003). According to its authors, Zstep records user actions such as purchases on the Web. It interactively matches these actions with generic models and allows users to monitor and investigate the execution of their actions. It also tracks the changes that user action data items undergo, automatically generating audit trails, and illuminating users as to the state of their actions and data (Lieberman and Wagner, 2003). In the next decade, likely users will be given more power over monitoring the history of their transactions.

Security and a standardized method of communicating faults will allow software to automatically detect anomalous activity. From a security perspective, a set of certain fault transactions might indicate that a user account has been compromised, or someone is testing the system for vulnerabilities.

The SCC's Scherlis says the software appears to be on the brink of a shift in practices. “These shifts happen rather quickly,” Scherlis says. “Economists call it 'tipping',” such a tip may be happening in the next five years or so with respect to software quality. (Goth, 2000).

If the software industry is on track with futurists' predictions, then soon we will see software trained rather than written (BTexact Technologies, 2002). By having a repository of fault diagnostics, patterns, and solutions, the software that is automatically trained can avoid anti-patterns generated previously.

Conclusion

If EC software is to earn trust of customers, then it needs to provide resiliency. Fault tolerant EC sites will demonstrate a customer-centric approach and probably get sales and retain customers better than their non-fault tolerant competitors. This will require a redistribution of the fault cost, from customer back to the software vendors.

In this paper I have formalized the necessary diagnostics necessary to recognize and store faults in a standardized manner for electronic commerce.

Making software fault communication easier and standardized allows the fault diagnostics to be placed in the hands of those fixing the problem. Software debugging will appear more proactive rather than reactive, and the cost of fixing defects will decrease.

By making the software industry more efficient, it can expand the size of the market (Porter, 2001). The software industry is preparing technologies which will propel it for the next giant leap forward. Already we have automated testing, process communication, user agents, and hardware recoverability. By integrating these techniques into fault-tolerance software, future EC software can find and circumvent the anti-patterns that faults represent.

Glossary

acceptance tests
Created from user stories. The customer specified scenarios to test when a user story has been correctly implemented (Wells, 1999).

anomaly
Anything observed in the documentation or operation of software that deviates from expectations based on previously verification.

assertions
Assert methods in software test whether a condition is true. Together, a set of assertions can be used in conjunction with a set of instructions to produce acceptance tests, unit tests, and component tests.

bug
Error or defect in software or hardware that causes a program to malfunction (Webopedia, 2003). When a bug is found tests are create to guard against it coming back. (Wells, 1999).

defect
Flaw or imperfection in a software work product or software process (Florac, 1992).

criticality
Degree of impact that a requirement, module, error, fault or other item has on the development or operation of a system (IEEE, 1990).

error
(1) differences between computed, observe, or measured values and the true, specified, or theoretically correct value or conditions, (2) an incorrect step process or data definition, (3) an incorrect result, (4) a human action that produces an incorrect result. (Florac, 1992).

error recovery
A task that involved restoring an error-free state from an erroneous one. There are two types of error recovery: forward, in which the current error is kept and the system proceeds around it, and backward, where the system must be backed up to a previous state (Szturc et al, 2993).

exception
Thrown when a method encounters an abnormal condition. Avoid using exceptions to indicate conditions that can reasonably be expected as part of the typical functioning of the method (Venners, 1998).

failure
Departure of software operation from requirements during execution of a program (Musa, 1987). The inability of a system or component to perform its required functions within specified performance requirements (Florac, 1992).

fault
Persistent defect in executable code which causes software failures (Florac, 1992).

fault tolerance
The ability of a system to respond gracefully to an unexpected hardware or software failure (Webopedia, 2003).

metric
Quantified measure (Florac, 1992).

priority
The level of importance assigned to an item (IEEE, 1990).

problem
Any flaw or imperfection in a software work product or software process (Florac, 1992).

proactive
Acting in anticipation of future problems, needs, or changes.

quality
The number and frequency of problems and the defects associated with a software product are inversely proportional to the quality of the software.

quality
bundle of attributes present in a commodity for which the consumer holds a positive value (RTI, 2002).

repair
A set of changes made to a software product or such that a fault or defect no longer occurs or exists within the application (Florac, 1992).

reactive
Responsive to stimuli.

resilience
The ability to rebound after a setback.

severity
The level of potential impact of a problem (IEEE, 1990).

testability
The probability of detecting a defect with a randomly chosen input (Malaiya, 2002)

urgency
The degree of importance that the evaluation, resolution, and closure of a problem is given by the organization charge with executing a problem management process. The value is assigned by the supplier, or developer, who should or must consider the severity of the problem as expressed by the problem originator . Determines the order in which problems are evaluated, resolved, and closed (Florac, 1992).

usability

measure of the quality of a user's experience when interacting with a product or system (Turban, 2002, p. 511).

References

Al-Ekram, Raihan. (2002). Software Reliability Growth: Modeling and Prediction. Department of Electrical and Computer Engineering. University of Waterloo. March 5, 2002. Retrieved November 25, 2003 from http://www.swen.uwaterloo.ca/~rekram/reports/software_reliability_growth_modeling_and_prediction.pdf

Atmospheric Dynamics DST. (2001). Atmospheric phenomena - Definition, Images and Related Links. August 28, 2001. Retrieved November 25, 2003 from http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/atmospheric_dynamics/ad_education/Def2.html

Auguste, Donna. (2001). Customer Service. IEEE Internet Computing. Retrieved November 15, 2003 from http://computer.org/internet/ 1089-7801/01/$10.00

Bock, Paul. (1994). Using and Understanding Decibels. Retrieved November 25 from http://www.columbia.edu/~fuat/cuarc/dB.html
Bolan, Philip. (2002) Challenges in Software Reliability and Testing. Third International Conference on Mathematical Methods in Reliability. June 17-20, 2002 Tronheim, Norway. Retrieved November 25, 2003 from http://www.math.ntnu.no/mmr2002/papers/invited/Boland.pdf

Braile, L. (2003). Earthquake Hazard Information – Hazard, Risk, Magnitude, Intensity, Earthquake Statisitcs, Part 1 (Information for interpreting the results of building contest and shake table testing). Retrieved November 25, 2003 from Purdue University, Earth and Atmospheric Science http://www.eas.purdue.edu/~braile/edumod/eqhazard/eqhazard1.htm

Brown, William. (1998). AntiPatterns. New York: John Wiley & Sons.

Carnegie Mellon Software Engineering Institute. (2002). Capability Maturity Model Integration (CMMISM), Version 1.1, CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1) Staged Representation CMU/SEI-2002-TR-012 ESC-TR-2002-012 CMMI. Retrieved November 21, 2003 from http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf
Cerami, Ethan (2003). Web Services Essentials. O'Reilly & Associates, Inc.

Connell, Charles. (2003). It's Not About Lines of Code. Retrieved November 23, 2003 from Developer.com Gamelan. http://www.developer.com/java/other/article.php/988641 April 22, 2003.

Devedge. (2000). Core JavaScript Reference 1.5. Chapter 3 Chapter 3 Statements . September 28, 2000. Retrieved November 21, 2003 from http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/stmt.html
E.Piphany. (2003). E.PIPHANY ANNOUNCES COMPLETION OF E.6 PLATFORM. Retrieved November 23, 2003 from http://www.epiphany.com/search.asp?qu=fault%20tolerance&ss=

Ecma International. (1999). Standard Ecma-262 ECMAScript Language Specification 3rd edition. December 1999. Retrieved November 25, 2003 from http://www.ecma-international.org/publications/standards/Ecma-262.htm .

Florac, William. (1992). Software Quality Measurement: A Framework for Counting Problems and Defects. Technical Report CMU/SEI-92-TR-022 ESC-TR-92-022. Software Engineering Institute, Canegie Mellon University. September 1992. Retrieved November 23, 2003 from http://www.sei.cmu.edu/pub/documents/92.reports/pdf/tr22.92.pdf .

General Electric (2003). Retrived November, 2003 from http://www.ge.com/sixsigma/sixsigstrategy.html .

Goth, Greg. (2003). NIST Report Takes a Step toward Better Testing. Retrieved November 26, 2003 from http://www.sba.oakland.edu/faculty/rajagopa/Courses/515/testing1.pdf
Hammer, Michael. (2001). The Agenda : What Every Business Must Do to Dominate the Decade. Crown Business: New York.

Information Systems Audit and Control Association, South African Chapter. (2003). ISO 9126. Retrieved November 26, 2003 from http://www.isaca.org.za/Iso9126.htm

Institute of Electrical and Electronics Engineers (IEEE). (1988). IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce Reliable Software. New York: Institute of Electrical and Electronics Engineers.

Institute of Electrical and Electronics Engineers (IEEE). (1990). IEEE Standard Glossary of Software Engineering Terminology (IEEE Std 610.12-1990). New York: Institute of Electrical and Electronic Engineers.

Institute of Electrical and Electronics Engineers (IEEE). (1996). “IEEE Software Engineering Collection: Standard Dictionary of Measures to Produce Reliable Software (IEEE Computer Society Document).” New York: Institute of Electrical and Electronics Engineers.

Kailar, Rajashekar. (1996). Accountability in Electronic Commerce Protocols. IEEE Transactions on Software Engineering 22 (5).

Kopetz. (2000). Software Engineering for Real-Time: A Roadmap. Future of Sofware Engineering. Limerick, Ireland. ACM 1-58113-253-0/00/6.

Lieberman, Henry. Wagner, Earl. (2003). End-User Debugging for E-Commerce. ACM IUI’03, January 12–15, 2003, Miami, Florida, USA.

Louie, John (1996). What is Richter Magnitude? Retrieved November 21, 2003 from http://www.seismo.unr.edu/ftp/pub/louie/class/100/magnitude.html

Lurie, Jonathan. (2003) Error-free Software Is in Reach, but Is Anyone Reaching? Retrieved November 23, 2003 from http://www.devx.com/enterprise/Article/16687 July 29, 2003

Malaiya, Y. K. (2000). Fault Modeling. Fault Tolerant Computing. Class Handout, Colorado State University. September 1, 2000. Retrieved November 25, 2003 from http://www.cs.colostate.edu/~cs530/faultmodel.pdf

Microsoft Corporation (2003). Strategies for Fault-Tolerant Computing. Retrieved November 23, 2003 from http://www.microsoft.com/windows2000/docs/ftcomp.doc.

Musa, John D.; Iannino, Anthony; & Okumuto, Kazihra. (1987). Software Reliability Measurement, Prediction, Application. New York, N.Y.: McGraw-Hill.

NASA. (2002). Fault Tree Handbook with Aerospace Applications. Version 1.1. August, 2002. Retreived November 24, 2003, from http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
NASA. (2002). Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. Version 1.1. August, 2002. Retreived November 24, 2003, from http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf

NOAA. (2003). Saffir-Simpson Hurricane Scale. Retrieved November 25, 2003 from http://www.aoml.noaa.gov/general/lib/laescae.html

Pogson, Norman, Esq. (1857). Magnitudes of Thirty-six of the Minor Planets for the First Day of each Month of the Year 1857. Monthly Notices of the Royal Astronomical Society, Vol. XVII, Page 12-15, Retrieved November 25, 2003 from http://www.geocities.com/CapeCanaveral/2309/pogson.pdf

Porter, M. (2001). Strategy and the Internet. Harvard Business Review, March 2001, 67.

Rainfinity. (2003). When e-business failure is not an option. Retrieved November 25, 2003, from http://www.rainfinity.com/uk/rf_brochure.pdf
Rose, Gregory & Khoo, Huoy, and Straub, Detmar. (1999). Current Impediments to Business-to-Consumer Electronic Commerce. Communications of the Association for Information Science 1:16. June 1999.

RTI. (2002). The Economic Impacts of Inadequate Infrastructure for Software Testing, Final Report. Prepared for National Institute of Standards and Technology. Acquisition and Assistance Division. RTI Project Number 7007.011. Retrieved November 23, 2003 from http://www.nist.gov/director/prog-ofc/report02-3.pdf May 2002.

Singh , Shawren & Kotzé, Paula. (2002). Towards a Framework for E-Commerce Usability. Proceedings of SAICSIT 2002. SAICSIT. Pages 2 – 10.

Sekirkin, Santos, and Philip Boland. (2002). Fault Causing Characteristics in Software Development. Retrieved November 25, 2003 from http://www.math.ntnu.no/mmr2002/papers/contrib/Sekirkin.pdf

Shapiro, et al. (1992). Business on a Handshake. The Negotiation Journal. Octover 1992.

Snow, John. & Thersa A. Leyton. (2003). Reflections on Ted Fujita: The relevance of his many contributions to today's wind science. Invited Keynote Delivered to 11th International Conference of Wind Engineering. Lubbock Texas, June 3, 2003. Retrieved November 25, 2003 from http://geowww.gcn.ou.edu/~jsnow/present/Reflections%20on%20Ted%20Fujita.pdf
Steinauer, Dennis; Wakid, Shukri; Rasberry, Stanley. (1997). Trust and Traceability in Electronic Commerce. StandardView. Vol. 5, No. 3, September/1997.

Szturc, R., Vondrák, I., Kružel, M. (1999). Error Recovery in Software Process. European Concurrent Engineering Conference ECEC ’99, SCS, Erlangen-Nuremberg, Germany. 1999. pp. 64-69. Retrieved November 25, 2003 from http://vondrak.cs.vsb.cz/cez/download/error_recovery_in_software_process.pdf

Tourniaire, Francoise. (2003). What’s an escalation manager and where can I find one? Retrieved November 23, 2003 from Service and Support Professionals Association, http://www.thesspa.com/sspanews/102803/article1.asp
Tygar, J. D. (1996). Atomicity in Electronic Commerce. Proceedings of the 15th Annual ACM Symposium on Priciples of Distributed Computing (PODC '96) Retrieved November 15, 2003 from http://www.informedia.cs.cmu.edu/documents/tygar_tr960112.pdf
Venners, Bill. 1998. “Designing with exceptions: Guidelines and tips on when and how to use exceptions.” JavaWorld. July 1, 1998. Retrieved November 25, 2003 from http://www.javaworld.com/javaworld/jw-07-1998/jw-07-techniques.html

Webopedia. 2003. Fault Tolerance. Webopedia.com. http://www.webopedia.com/TERM/f/fault_tolerance.html. 10/01/2003.

Wells, Don. (1999). When a bug is found. Retrieved from Extreme Programming. Retrieved November 23, 2003 from http://www.extremeprogramming.org/rules/bugs.html
Wiegers, Karl. (1998). Know Your Enemy: Software Risk Management. Software Development. Retrieved November 23, 2003 from http://www.processimpact.com/articles/risk_mgmt.html.

World Wide Web Consortium. (2000). Simple Object Access Protocol (SOAP) 1.1 W3C Note 08 May 2000. (2003) Retrieved November 11, 2003 from http://www.w3.org/TR/SOAP.

Appendix 1. Electronic Commerce Site Testing

I wanted to see if electronic commerce sites today are using any kind of process fault recovery in their on-line ordering systems. For each of the electronic commerce sites that I tested, I tried to purchase the book by Charles Handy, The elephant and the flea. I completed the order information process to the point of submitting payment, at which point I would leave their site. This experiment was meant to see how different e-commerce sites handle an uncompleted order. I conducted this experiment on November 19, 2003 from 9:47PM through 10:35PM.

Most of the web sites followed a similar structure for placing an order. The ordering system changes the paradigm of the website from user-driven to system-driven. The system makes the initiatives in this phase.

Step 1. For each of the following book e-commerce sites, I found the following book: Charles Handy, The elephant and the flea.

Step 2. Proceed to the checkout.

Step 3. Complete registration information, including mailing address, and e-mail address. This was always before going to a payment page, so I knew that they had the potential of saving my e-mail address somewhere in conjunction with the order. Figure A2.1 shows the final page before ordering for the Half.com site.

[image: image2.png]
Figure A2.1 Half.com Order Page

Step 4. Some sites included intermediary, “We thought you might be also interested in...”, or , customers who shopped for “x” also shopped for “y” pages.

Table A2.1 shows the sites that I tested. All of these sites sell books. As of November 28, eight days after the last contact with these sites, there has been no e-mail communication to my e-mail address informing me of the state of my incomplete order.

Site
Contacted Customer

abebooks.com
No.

alibris.com
No.

amazon.com
No.

a1books.com
No.

barnesandnoble.com
No.

ecampus.com
No.

half.com
No.

powells.com
No.

textbookx.com
No.

walmart.com
No.

Table A2.1 Sites Tested in Experiment

Appendix 2. SOAP 1.1 Fault Specification

Figure A2.1 shows an example SOAP Fault Message Response.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:MustUnderstand</faultcode>
 <faultstring>SOAP Must Understand Error</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure A2.1 SOAP 1.1 Fault Message Response (W3C, SOAP1.1, 2003)

There are four primary elements specified by the SOAP 1.1 Fault Specification. These are faultcode, faultstring, faultactor, and detail elements, as shown in Table A2.1 Primary Elements of the SOAP 1.1 Fault Specification.

Element
Description

faultcode*
The faultcode element is intended for use by software to provide an algorithmic mechanism for identifying the fault.

faultstring*
The faultstring element is intended to provide a human readable explanation of the fault and is not intended for algorithmic processing.

faultactor
Indicates the source of the fault. The value of the faultactor attribute is a URI identifying the source.

detail*
The detail element is intended for carrying application specific error information related to the Body element. It MUST be present if the contents of the Body element could not be successfully processed.

Table A2.1 Primary elements of the SOAP 1.1 Fault Specification

The SOAP 1.1 fault specification delineates four faultcode values: VersionMismatch, MustUnderstand, Client, and Server.

A VersionMismatch indicates that the SOAP message was received by a SOAP application in which the SOAP Envelope method is assocated with a different namespace.

The Client class of faultcode indicates that the message was incorrectly formed or did not contain the appropriate information in order to succeed. For example, the message could lack the proper authentication or payment information. It is generally an indication that the message should not be resent without change.

The Server class of faultcodes indicates that the message could not be processed for reasons not directly attributable to the contents of the message itself but rather to the processing of the message. For example, processing could include communicating with an upstream processor, which didn't respond. Also, the message may succeed at a later point in time.

Appendix 3. Client Side Fault Tolerance

You can use one or more conditional catch blocks to handle specific exceptions. In this case, the appropriate catch block is entered when the specified exception is thrown. In the following example, code in the try block can potentially throw three exceptions: TypeError, RangeError, and EvalError. When an exception occurs, control transfers to the appropriate catch block. If the exception is not one of the specified exceptions, control transfers to the unconditional catch block at the end. If you use an unconditional catch block with one or more conditional catch blocks, the unconditional catch block must be specified last (Devedge, 2000).

throw expression; // throw an exception

function UserException(message)

{

this.message = message;

this.name = “User Exception”;

}

try {

 myroutine(); // may throw three exceptions

}

catch (e if e instanceof TypeError) {

 // statements to handle TypeError exceptions

}

catch (e if e instanceof RangeError) {

 // statements to handle RangeError exceptions

}

catch (e if e instanceof EvalError) {

 // statements to handle EvalError exceptions

}

catch (e){

 // statements to handle any unspecified exceptions

 logMyErrors(e) // pass exception object to error handler

}

finally

{

// statements to perform whether an exception was thrown or not

}

Figure A3.1 Try-Catch implementation in EcmaScript

Appendix 4. Fault standard definition attributes

The fault standard here is still a work in progress, but here is the most current definition.

<fault>

<appCustomer/> /* the customer id of the application */

<appEnvironment/> /* environment that the application is running on */

<appMode/> /* what mode the fault was found in – testing, live or development */

<appServer/> /* environment that the application is running on */

<appUser/> /* the user id of the application */

<appVendor/> /* url of software vendor */

<appVersion/> /* the application version */

<faultCode/> /* fault code */

<faultDetails/> /* any extra details that should be saved */

<faultId/> /* unique id for this fault */

<faultMessage/> /* 0-256 character line simply describing the error */

<faultSeverity/> /* log-based severity 1-10 */

<faultType/> /* type of fault */

<occDate/> /* date the fault occurred */

<occTime/> /* time the fault occurred */

<srcFile/> /* if the error occurred external to the application source */

<srcFilePos/> /* file position in the external file */

<srcFileLine /> /* line number in the external file */

<srcFileLinePos /> /* position in the line in the external file */

<src/> /* path to the source code */

<srcFunction/> /* source code function or method name */

<srcLine/> /* line number in the source code */

<srcLinePos/> /* position in the line in the source code */

<stackReference/> /* reference indices, keys or ids that may help debug */

<stackTrace/> /* a stack trace of the functions called */

</fault>

<track>

<faultId#/> /* faults that this issue is related to */

<trackId/> /* there may be a separate tracking system for the faults */

<trackUrgency/> /* urgency assigned to the fault */

<trackUserAssigned/> /* user id who was assigned to investigate the fault */

<trackUserEntered/> /* user id who entered the fault, or who is responsible for tracking the fault */

<trackUserVerified/> /* user id who verified the fault fix */

</track>

<patch>

<patchId/> /* patch id for this patch */

<trackId#/> /* tracking ids that this patch is assigned to */

<availablePath/> /* Description URL describing where to download this patch */

<availableDate/> /* date patch available */

<availableTime/> /* time patch available */

</patch>

35/35

